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Abstract: In the last years, new and more sophisticated measurements have been at the basis
of the major progress in various disciplines related to the environment, such as remote sensing
and thermonuclear fusion. To maximize the effectiveness of the measurements, new data analysis
techniques are required. First data processing tasks, such as filtering and fitting, are of primary
importance, since they can have a strong influence on the rest of the analysis. Even if Support
Vector Regression is a method devised and refined at the end of the 90s, a systematic comparison
with more traditional non parametric regression methods has never been reported. In this paper, a
series of systematic tests is described, which indicates how SVR is a very competitive method of
non-parametric regression that can usefully complement and often outperform more consolidated
approaches. The performance of Support Vector Regression as a method of filtering is investigated
first, comparing it with the most popular alternative techniques. Then Support Vector Regression is
applied to the problem of non-parametric regression to analyse Lidar surveys for the environments
measurement of particulate matter due to wildfires. The proposed approach has given very positive
results and provides new perspectives to the interpretation of the data.
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1 Introduction

In the last years, the need to reduce particulate emissions has grown substantially, due to both
air quality issues and the effects on global and regional radiative forcing and therefore climate
change. As a consequence, it has become increasingly important on the one hand to better monitor
the environment and, on the other hand, to develop different and non-polluting sources of energy.
With regard to the assessment of air quality, the Lidar-Dial techniques are widely recognized as a
cost-effective alternative to monitor large regions of the atmosphere. They have been successfully
deployed to detect Particulate Matter (PM) and pollutants, emitted by various sources in industrial
and city centres and by wild fires in rural areas. With reference to non-polluting energy sources,
the research in Nuclear Fusion remains a very active field of activity; to improve the performances
of present day reactors, diagnosing plasma instabilities is a very important element. To maximize
the effectiveness of the measurements, new data analysis techniques are required. In this paper,
the performance of Support Vector Regression (SVR) as a method of filtering is investigated first,
comparing it with the most popular alternative techniques. A series of systematic numerical tests
indicate that Support Vector Regression provide particularly robust results. Then the signal filtered
with SVR are analysed using a nonlinear fitting procedure to obtain information about the properties
of the backscattering coefficient. The innovative tools developed allow determining the evolution
of the backscattering coefficient versus distance for both the case of concentrated and widespread
smoke, providing new perspectives to the application of the technique.
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2 Description of the signals to be analysed

Figure 1. Telescope and laser.

In this paper, different types of Lidar signals will be analysed.
The common denominator of these signals is that they are time
series, affected by significant levels of noise and therefore quite
difficult to interpret. They also present sudden or widespread peaks
which correspond to events that have to be identified, if possible in
automatic ways.

2.1 The Lidar system

Lidar measurements have becomewell established laser based tech-
niques for remote sensing of the atmosphere [1]. They are used to
probe almost any altitude in the most different conditions, from
forests to urban areas. One of the most interesting applications con-
sists of environment surveying of particulate (see [2–5] and [6]).
Themeasurements described in the paper have been performedwith

the mobile Lidar unit of Industrial Engineering Department, University of Rome “Tor Vergata” [7].
The system consists of an easily transportable compact Lidar system. The transmitter is a Nd:YAG
laser that can operate at three wavelengths: 1064, 532 end 355 nm. For this analysis is been used
signals by the 1064 nm wavelength because it is better suited to the identification of particulate air
pollution.

The signals analysed in this paper have been collected during an extensive experimental
campaign, which has been carried out in Calabria, in the south of Italy as shown in figure 2.

Figure 2. Experimental set up for the measurement campaign in Lamezia Terme (CZ), Calabria, Italy.

– 2 –
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Table 1. Parameters of Nd:YAG Lidar system [14].
Transmitter:

Laser Q-switch Nd:YAG
Pulse time width 8 ns
Divergence angle 5mrad
Pulse Frequency 10Hz

Receiver:
Telescope type Newtonian

Nominal focal length 1030mm
Primary mirror diameter 210mm

Detector Photomultiplier (PMT)
Photocathode sensibility 0.2mA/W

Response time ∼ 30 ns

The laser is anchored at the receiver system,
a Newtonian telescope as shown in figure 1, and
the detector chosen is a Hamamatsu’s photomulti-
plier tube (PMT), R3235model. These technolo-
gies have become relatively standard and there-
fore they can be procured at reasonable costs.
The main characteristics of the mobile unit are
reported in table 1.

The entire apparatus is controlled by a soft-
ware package, developed by University of Rome
“Tor Vergata”, written in Labview and Matlab,
explicitly developed for this application [8]. The
laser activation and the wavelength selection, to-
gether with the rotation of the telescope and data acquisition, is controlled by a Labview series of
routines. The signal processing algorithms and the visualization of the results have been imple-
mented using Matlab.

The signal processing routines calculate the distance of the fire from the station and also show
the fire topographic coordinates.

2.2 Features of widespread smoke and concentrated smoke in Lidar signals

Figure 3. Raw signal by Lidar system, in blue the clear signal
without smoke; in red the signalwithwidespread smoke, in partic-
ular between 70 and 200m; in green the signal with concentrated
plume of smoke near 300m.

The Lidar technique has been suc-
cessfully applied to the detection of
the smoke plume emitted by wild
fires, allowing the reliable survey of
large areas, and this becausewild fires
have become a very serious prob-
lem in various parts of the world.
The main operational approach en-
visages the continuous monitoring of
the area to be surveyed with a suit-
able laser. When a significant peak in
the backscattered signal is detected,
an alarm is triggered. The traditional
applications of Lidar systems to at-
mospheric physics therefore rely on
the capability of properly detecting
the backscattered peaks of radiation.

More recently, the Lidar tech-
nique has been shown to have the
potential to provide useful measure-
ments also of widespread smoke, which can be the consequence of strong wind dispersion or
non-concentrated sources [9] and [6]. Typical examples of backscattered signals for the alternatives
of clear atmosphere, strong smoke plume and widespread smoke are shown in figure 3.
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2.3 Simulating the Lidar backscattered signals

The Lidar raw signals present a decreasing exponential tract, the first increasing part of the signals
not having any physical meaning, because it is determined by the intersection between the field of
view of the telescope and the scattered laser light cone. So from the first maximum (around 70m),
the real signals decrease exponentially with the distance due to the absorption of the atmosphere,
which is considered constant in the following treatment (therefore a constant K2 is assumed). Since
the detected signal consists of backscattered power, a quadratic decrease with respect to the distance
is to be included in the treatment. Equation (2.1) is therefore the mathematical model to fit the
experimental signals:

P (R) =
K1 (R)

R2 exp (−K2R) (2.1)

Where K1 e K2 are the parameters of the model and R is the range. In particular K1includes the
effect of the coefficient of backscattering β [3] geometrical and spectral form factor that usually are
assume as constant value. In this paper we try to express K1 as function of distance introducing
a new approach to the analysis of the experimental data. Indeed the backscatter coefficient, in
presence of an external agent, such as for example smoke, varies substantially. The result, as can
be seen from figure 3, is that, when the laser beam interacts with something different from clear
air, the backscattering power signal presents a concentrated or a widespread peak, depending on
the concentration and on the position of the scattering agent [10]. In the rest of the paper, new data
processing techniques are introduced to obtain reliably the spatial evolution of the backscattering
coefficient, starting from the raw experimental data.

3 Techniques for Data Processing

This section will discuss the techniques used to process the data so that we can extract from the
signals the necessary information. This is achieved by applying the SVR technique for the filtering
of the signals. Then a non-linear fitting procedure allows deriving the main quantity of interest, the
spatial evolution of the backscattering coefficient.

3.1 Support Vector Regression

Support Vector Regression is an alternative approach to non-parametric regression. Being based
on substantially different principles as the most common alternatives, Support Vector Regression
presents significant potential advantages for signal processing, which have not been fully explored
so far. Similarly to classification problems, a non-linear model is usually required to adequately
model data. In the same manner as the non-linear SVC approach, a non-linear mapping can be
used to map the data into a high dimensional feature space where linear regression is performed.
The kernel approach is again employed to address the curse of dimensionality. The non-linear SVR
solution, using an ε-insensitive loss function, is given by

max
α,α∗

W
(
α, α∗

)
=max
α,α∗

l∑
i=1

α∗i (yi − ε ) − αi (yi + ε ) −
1
2

l∑
i=1

l∑
j=1

(α∗i − αi)(α∗j − α j )K (xi, x j ) (3.1)
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with constraints of the equations (3.2) and (3.3):

0 ≤ αα∗ ≤ C, i = 1, . . . , l (3.2)
l∑

i=1

(
αi − α

∗
i

)
= 0 (3.3)

Solving the previous equation with constraints determines the Lagrange multipliers, αi, α∗i , and the
regression function is given by,

f (x) =
∑
SVs

(
ᾱi − ᾱ

∗
i

)
K (xi, x) + b̄ (3.4)

where

〈w, x〉 =
l∑

i=1

(
αi − α

∗
i

)
K (xi, x j ) (3.5)

b̄ = −
1
2

l∑
i=1

(
αi − α

∗
i

) (
K

(
xi, x j

)
+ K

(
xi, x j

))
(3.6)

As for the case of Support Vector Classification the equality constraint may be dropped if the Kernel
contains a bias term, b being accommodated within the Kernel function, and the regression function
is given by,

f (x) =
l∑

i=1

(
ᾱi − ᾱ

∗
i

)
K (xi, x) (3.7)

The optimisation criteria for the other loss functions are similarly obtained by replacing the dot
product with a kernel function. The ε-insensitive loss function is attractive because unlike the
quadratic and Huber cost functions, where all the data points will be support vectors, the SV
solution can be sparse.

In order to investigate the potential of the SVR regression for the analysis of time series, a
systematic comparison with traditional non-parametric regression techniques has been undertaken
first. The methods used for comparison are: Moving average, Lowess, Loess, Rlowess: robust
version of Lowess, Rloess: robust version of Lowess and Savitzky-Golay.

The moving average is obtained by calculating a series of averages of different subsets of the
full data set. Given a time series and a fixed subset size, the first element of the moving average is
calculated by taking the average of the initial fixed subset of points of the series. Then the subset
is changed by a process of “shifting forward”; that is, excluding the first number of the series and
including the next number. This operation generates a new subset of numbers, which is averaged.
This process is repeated over the entire series.

The acronyms “Lowess” and “Loess” are derived from the term “Locally weighted scatter plot
smooth”, as both methods are based on locally weighted linear regression to smooth the data. The
linear regression is performed over a limited number of points called the span. The smoothing
process is therefore local because each smoothed value is determined only by neighbouring data
points, the ones within the span. The process is weighted because a regression weight function is
used to fit the data points contained within the span. The data point to be smoothed has the largest
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weight and the most influence on the fit. The more distant the points from the one to be fitted the
lower their weight and points outside the span are given zero weight and do not influence on the fit.
The two approaches are similar but differ in the model used for the regression: Lowess implements
a linear polynomial, while Loess implements a quadratic polynomial.

Table 2. Root Mean Square Error for the two different
plume signal of figure 3: widespread and concentrated.

Method RMSE RMSE
widespread plume concentrated plume

SVR 0.035931 0.040395
Moving 0.037002 0.042335
Lowess 0.038525 0.045942
Loess 0.036643 0.042956
S-Golay 0.038116 0.041668
Rlowess 0.036705 0.042080
Rloess 0.037445 0.044489

Rlowess and Rloess are robust versions
of Lowess and Loess, to reduce the sensi-
tivity to outliers. Robustness is achieved by
an appropriate choice of the weight function.
These robust methods include an additional
calculation of robust weights, based onMAD,
which is resistant to outliers.

The Savitzky-Golay filter can be consid-
ered a generalisation of the Loess approach
allowing to choose higher order polynomials
for the fit. In the applications presented in
this paper the degree of the polynomial is always 6 or higher.

Figure 4. In black the Lidar experimental signal in case of widespread smoke is reported; in red the signal
smoothed with SVR and in: green, cyan, yellow, magenta, blue and orange the results of the smoothing with
the other methods: Moving, Lowess, Loess, S-Golay, Rlowess and Rloess respectively.

In table 2 the Root Mean Square Errors for the various smoothing methods are reported. It can
be noted, as show in [11] that SVR reduces the RMSE between Lidar signal and the fit. The results of
the various smoothing methods of Lidar experimental signals are shown graphically in figure 4 and
figure 5, again for the two experimental curves of figure 3. In figure 4 the case of widespread smoke
is reported and, as can be seen more clearly in the zoomed part on top, the improvement of the SVR
smoothing is appreciable. The same effect can be seen in figure 5 for a case of concentrated smoke.

3.2 Smoothing and non-linear fitting of Lidar signals

As mentioned in section 2.3, the experimental Lidar signal requires some pre-processing before
being fitted. First, the growing part of the signal has to be excluded; then some form of smoothing is
required and in this paper this has been achieved with the SVR approach. In general, before smooth-
ing it is advantageous to normalize the signal to its maximum value as shown in figure 4 and figure 5.

– 6 –
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Figure 5. In black the Lidar experimental signal in case of concentrated plume is reported; in red the signal
smoothed with SVR and in: green, cyan, yellow, magenta, blue and orange the results of the smoothing with
the other methods: Moving, Lowess, Loess, S-Golay, Rlowess and Rloess respectively.

After smoothing the signal with the SVR we can re-multiply by the normalization factor to
recover the dimensional result. This dimensional smoothed signal is the input to the fitting routine.
The fitting routine used a Matlab function that solve the nonlinear least-squares problems:

min
x
‖ f (x)‖22 = min

x

(
f1(x)2 + f2(x)2 + . . . + fn(x)2

)
(3.8)

Where into f (x) there are the equation model with the parameters that want to fit, K1 and K2. By
inserting an appropriate initial condition it is possible to detect, through the minimization of the
problem, the best parameters of the nonlinear fit.

The model given by equation (2.1) is the equation to fit to the data. To perform this step a
Matlab tool has been developed by the Research Group of University of Rome “Tor Vergata”. First
of all, the program searches the peaks in the smoothed signal and keeps track of their location, height
and width. It then performs the non-linear fit of the smoothed signal with the proposed model,
equation (2.1), to obtain the parameters. The algorithm goes to convergence when it finds a K1(R)
which provides a good fit of the smoothed backscattered signal. In this way K1 as function of the
distance is derivedwhich is equivalent to obtaining a backscattered coefficient versus radial position.

4 Tests of the fitting procedure with synthetic but realistic signals

This session will present the analysis to get the K1 as function of distance from synthetic signals
very similar to the experimental data of figure 3 after smoothing with SVR.

4.1 Concentrated smoke signals

This section presents the analysis results conducted on a test signal with two peaks concentrated
at distances of 200 and 650meters. As you can see from the first graph of figure 6, the model
equation (2.1) can be fitted to the data quite well. With regard to the two fitting parameters K2

is constant and equal to 4.44E-3, while K1 is shown in the bottom graph of figure 6. As can be
seen from the figure 6, the value of K1 for the first peak is lower than the second peak located at
650meters. This is due to the fact that the acquired signal decreases with the square of the distance

– 7 –
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and the presence of a small peak in the backscattered light at a very long distance is indicative of a
strong variation of the backscatter coefficient at that distance.

Figure 6. Top graph: in black the smoothed signal with two concentrated peaks and in red the fit with
equation (2.1). The bottom graph reports the amplitude of K1 versus distance.

4.2 Widespread smoke signals

In this case two widespread peaks, at the distance of 400 and 800meters have been added to the
decaying backscattered signal of clear atmosphere. Figure 7 shows again the developed algorithm
can properly fit equation (2.1) to the data. With regard to the K parameters K2 is constant and equal
to 2.02E-3, while K1 is shown in the lower graph of figure 7. Also in this case the distance plays
a significant role requiring a much more significant change in the backscattering coefficient for the
second peak compared to the first peak localized 400meters closer.

Figure 7. Top graph: in black the smoothed signal with two wide spread peaks and in red the fit with
equation (2.1). The bottom graph reports the amplitude of K1 versus distance.

– 8 –
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5 Conclusions

In this paper a new signal processing approach has been proposed to analyse the backscattered
signal of Lidar systems for the monitoring of the environment. The method proposed consists of
smoothing the signal with SVR before applying a specific non-linear fitting routine. The model of
equation (2.1) allows deriving a profile of the backscattering coefficient, without any assumption
about the behaviour of the atmosphere. The first results are very encouraging, a shown from the
analysis of signals from both concentrated smoke plumes and wide spread smoke. It is also worth
mentioning that the approach, and particularly the smoothing step, is already being considered for
implementation by other communities such as Nuclear Fusion [12] and [13].
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